University of Waterloo, Mechanical Engineering	Name:	
ME 351 Winter 2024	Do not	write your ID on this side. Write your ID on the back side.

Tutorial 6: Dimensional Analysis and Similarity

Instructor: R. McConkey; Teaching Assistants: M. Lewis, P. Nath, S. Hillcoat

Instructions:

Submit your handwritten solution at the end of the seminar. Answer the question(s) below in either the space provided, or a separate sheet of paper. If you use extra pages, be sure to attach all pages to your submission. If you have questions, ask the teaching assistants for help.

Rules:

You are encouraged to work with your classmates, but everyone must submit their own solution. You are not permitted to directly copy another student's answers – each student must be able to explain their own solution. You can use online resources, but you are not permitted to use any solution manuals or AI tools (e.g., ChatGPT).

Question 1

Form groups of 2-6 students. *You must work with at least one other student.* What is the name of your group's engineering company?

Question 2

Your group members are employed as engineers at the above company, which offers experimental fluid mechanics services. Your company has the following facilities:

- a. A wind tunnel, with a 2 m \times 2 m \times 4 m test section, and a maximum wind speed of 150 m/s.
- b. A water tunnel, with a 1 m \times 1 m \times 10 m test section, and a maximum water speed of 8 m/s.
- c. A machine shop, which can fabricate models for testing.

The teaching assistants work for Lewis Nath Motor Company (LNMC). The engineers at LNMC have designed a new type of electric vehicle, and have contracted your company to estimate the drag force on LNMC's body design at a typical operating speed. The TA's are busy engineers, and they only have time for two meetings. You are encouraged to search online for any other information.

Complete the "Experimental Testing Plan" and "Experimental Analysis Report" for the electric vehicle project.

- a. Discuss with your group about what information is needed from the TA's.
- b. Send one person from your group as a representative to have a meeting with the TA's. Your representative may ask up to 5 questions.
- c. Complete the "Experimental Testing Plan" on the backside.
- d. Complete the "Experimental Analysis Report" on the backside. The experimental drag coefficient which was measured in your experiment has been filled in for you.
- e. If needed, you can send your representative back to have a second meeting with the TA's.

	ID:			
		EXPERI	IMENTAL TEST	TING PLAN
(Your company name)				
Test facility Γhe test will occur in the following facility:				_
The fluid velocity in the test section should be set	t at:		m/s.	
Supporting calculations for fluid velocity:				
2 Test geometry Dimensions (bounding box) of the test specimen	$_{1}(L imes W imes$	(<i>H</i>):		$(m \times m \times m)$
Supporting calculations for test geometry dimensio				(m / m / m)
apporting taitaitions for test geometry armensio	<i>///.</i> s.			
		EXPERIM	IENTAL ANAL	YSIS REPORT
(Your company name)				
Experimental Results				
Experimental drag coefficient: $C_D = 0$.	.4	_ (defined as C	$C_D = \frac{F_D}{\frac{1}{2}\rho U^2 A}, \text{ wh}$	Here A is the frontal area).
2 Analysis: Incompressibility				
The experimental Mach number is,	and the de	sign Mach nur	mber is	<u>_</u> .
s this a concern? Why or why not?	?			
Analysis: Predicted Design Performance		111	. 1 0	C
At a speed of km/h, we predict LNN		design will exp	perience a drag foi	ce of
Supporting calculations for drag force calculation:	•			

Name:

Grade: