Error Accumulation in Summation

Let E_N be the total rounding error after summing N terms, where δ_i is the error introduced at the i-th step:

$$E_N = \sum_{i=1}^N \delta_i$$

We assume the individual rounding errors δ_i are independent random variables with mean $\mu = \mathbb{E}[\delta_i]$ and variance $\sigma^2 = \mathbb{V}[\delta_i]$.

Error Metrics

The total error E_N is characterized by:

• Bias: $B = \mathbb{E}[E_N]$

• Variance: $\mathbb{V}[E_N] = \mathbb{E}[(E_N - B)^2]$

• Standard Deviation: $\sqrt{\mathbb{V}[E_N]}$

• Root Mean Square Error (RMSE): RMSE = $\sqrt{\mathbb{E}[E_N^2]} = \sqrt{B^2 + \mathbb{V}[E_N]}$

Error Statistics per Rounding Mode (Without Algorithmic Tricks)

Assuming independence and identical distribution for δ_i :

• The total bias is $B = \sum_{i=1}^{N} \mathbb{E}[\delta_i] = N\mu$.

• The total variance is $\mathbb{V}[E_N] = \sum_{i=1}^N \mathbb{V}[\delta_i] = N\sigma^2$.

Comparing Deterministic Rounding (Det) and Stochastic Rounding (SR):

• Deterministic Rounding (Det):

– Individual errors δ_i may have non-zero mean: $\mu_{\text{det}} \neq 0$.

– Individual errors have variance σ_{det}^2 .

– Total Bias: $B_{\text{det}} = N\mu_{\text{det}}$.

– Total Variance: $\mathbb{V}[E_N]_{\text{det}} = N\sigma_{\text{det}}^2$.

– Total RMSE: RMSE_{det} = $\sqrt{(N\mu_{\rm det})^2 + N\sigma_{\rm det}^2}$.

• Stochastic Rounding (SR):

– Designed to be unbiased: $\mu_{sr} = \mathbb{E}[\delta_i] = 0$.

– Individual errors typically have higher variance than Det: $\sigma_{\rm sr}^2 \geq \sigma_{\rm det}^2$. (SR introduces randomness where Det might have a fixed offset).

– Total Bias: $B_{\rm sr} = N\mu_{\rm sr} = 0$.

– Total Variance: $\mathbb{V}[E_N]_{\mathrm{sr}} = N\sigma_{\mathrm{sr}}^2$.

- Total RMSE: RMSE_{sr} = $\sqrt{0^2 + N\sigma_{\rm sr}^2} = \sqrt{N}\sigma_{\rm sr}$.

Comparison without tricks: SR outperforms Det (RMSE_{sr} < RMSE_{det}) when the deterministic bias term $N|\mu_{\rm det}|$ grows faster or is significantly larger than the difference in standard deviation terms. This occurs when N is large and $\mu_{\rm det}$ is non-negligible, as RMSE_{det} grows roughly linearly with N due to bias, while RMSE_{sr} grows as \sqrt{N} .

1

Effect of DDF-Shifting and Alternating Summation

These algorithmic techniques modify the sequence of operations and the values being summed, thereby changing the characteristics of the individual rounding errors δ_i under deterministic rounding. Let the modified errors be δ'_i .

- They reduce the magnitude of numbers involved in sums/differences.
- They increase the symmetry of rounding errors (less systematic bias).

The net effect is that for deterministic rounding, these tricks significantly reduce the bias per operation and potentially the variance:

- $\mu'_{\text{det}} \approx 0$ (deterministic bias is largely eliminated).
- $\sigma'_{\text{det}} \leq \sigma_{\text{det}}$ (variance may also decrease).

Error Statistics per Rounding Mode (With Algorithmic Tricks)

Let the statistics under the modified algorithm be denoted with a prime (').

- Deterministic Rounding (Det) with Tricks:
 - Total Bias: $B'_{\text{det}} = N\mu'_{\text{det}} \approx 0$.
 - Total Variance: $\mathbb{V}[E_N]'_{\text{det}} = N(\sigma'_{\text{det}})^2$.
 - Total RMSE: RMSE'_{det} = $\sqrt{(N\mu'_{\rm det})^2 + N(\sigma'_{\rm det})^2} \approx \sqrt{N}\sigma'_{\rm det}$.
- Stochastic Rounding (SR) with Tricks:
 - SR remains unbiased by design: $\mu'_{sr} = 0$.
 - The tricks might reduce the scale of numbers, possibly reducing SR variance compared to the raw case: $\sigma'_{\rm sr} \leq \sigma_{\rm sr}$. However, SR still introduces randomness, so it's expected that $\sigma'_{\rm sr} > \sigma'_{\rm det}$.
 - Total Bias: $B'_{sr} = 0$.
 - Total Variance: $\mathbb{V}[E_N]'_{\rm sr} = N(\sigma'_{\rm sr})^2$.
 - Total RMSE: RMSE'_{sr} = $\sqrt{N}\sigma'_{sr}$.

Comparison with tricks: Since the algorithmic tricks reduce the deterministic bias $\mu'_{\rm det}$ to near zero, the primary advantage of SR (eliminating bias) is nullified. The comparison now hinges primarily on the variances. If the deterministic scheme with tricks achieves near-zero bias ($\mu'_{\rm det} \approx 0$) and its inherent variance per step ($\sigma'_{\rm det}$) is lower than the variance introduced by SR ($\sigma'_{\rm sr} > \sigma'_{\rm det}$), then:

$$\mathrm{RMSE}_{\mathrm{det}}' \approx \sqrt{N} \sigma_{\mathrm{det}}' < \sqrt{N} \sigma_{\mathrm{sr}}' = \mathrm{RMSE}_{\mathrm{sr}}'$$

In this scenario, deterministic rounding combined with the algorithmic improvements outperforms stochastic rounding. SR becomes detrimental because it adds variance without providing a significant bias-reduction benefit (as the bias is already handled algorithmically).