
Error Accumulation in Summation

Let EN be the total rounding error after summing N terms, where δi is the error introduced at the
i-th step:

EN =

N∑
i=1

δi

We assume the individual rounding errors δi are independent random variables with mean µ = E[δi]
and variance σ2 = V[δi].

Error Metrics

The total error EN is characterized by:

• Bias: B = E[EN ]

• Variance: V[EN ] = E[(EN −B)2]

• Standard Deviation:
√
V[EN ]

• Root Mean Square Error (RMSE): RMSE =
√
E[E2

N ] =
√
B2 + V[EN ]

Error Statistics per Rounding Mode (Without Algorithmic Tricks)

Assuming independence and identical distribution for δi:

• The total bias is B =
∑N

i=1 E[δi] = Nµ.

• The total variance is V[EN ] =
∑N

i=1 V[δi] = Nσ2.

Comparing Deterministic Rounding (Det) and Stochastic Rounding (SR):

• Deterministic Rounding (Det):

– Individual errors δi may have non-zero mean: µdet ̸= 0.

– Individual errors have variance σ2
det.

– Total Bias: Bdet = Nµdet.

– Total Variance: V[EN ]det = Nσ2
det.

– Total RMSE: RMSEdet =
√
(Nµdet)2 +Nσ2

det.

• Stochastic Rounding (SR):

– Designed to be unbiased: µsr = E[δi] = 0.

– Individual errors typically have higher variance than Det: σ2
sr ≥ σ2

det. (SR introduces
randomness where Det might have a fixed offset).

– Total Bias: Bsr = Nµsr = 0.

– Total Variance: V[EN ]sr = Nσ2
sr.

– Total RMSE: RMSEsr =
√
02 +Nσ2

sr =
√
Nσsr.

Comparison without tricks: SR outperforms Det (RMSEsr < RMSEdet) when the deterministic
bias term N |µdet| grows faster or is significantly larger than the difference in standard deviation terms.
This occurs when N is large and µdet is non-negligible, as RMSEdet grows roughly linearly with N
due to bias, while RMSEsr grows as

√
N .
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Effect of DDF-Shifting and Alternating Summation

These algorithmic techniques modify the sequence of operations and the values being summed, thereby
changing the characteristics of the individual rounding errors δi under deterministic rounding. Let
the modified errors be δ′i.

• They reduce the magnitude of numbers involved in sums/differences.

• They increase the symmetry of rounding errors (less systematic bias).

The net effect is that for deterministic rounding, these tricks significantly reduce the bias per operation
and potentially the variance:

• µ′
det ≈ 0 (deterministic bias is largely eliminated).

• σ′
det ≤ σdet (variance may also decrease).

Error Statistics per Rounding Mode (With Algorithmic Tricks)

Let the statistics under the modified algorithm be denoted with a prime (’).

• Deterministic Rounding (Det) with Tricks:

– Total Bias: B′
det = Nµ′

det ≈ 0.

– Total Variance: V[EN ]′det = N(σ′
det)

2.

– Total RMSE: RMSE′
det =

√
(Nµ′

det)
2 +N(σ′

det)
2 ≈

√
Nσ′

det.

• Stochastic Rounding (SR) with Tricks:

– SR remains unbiased by design: µ′
sr = 0.

– The tricks might reduce the scale of numbers, possibly reducing SR variance compared to
the raw case: σ′

sr ≤ σsr. However, SR still introduces randomness, so it’s expected that
σ′
sr > σ′

det.

– Total Bias: B′
sr = 0.

– Total Variance: V[EN ]′sr = N(σ′
sr)

2.

– Total RMSE: RMSE′
sr =

√
Nσ′

sr.

Comparison with tricks: Since the algorithmic tricks reduce the deterministic bias µ′
det to near

zero, the primary advantage of SR (eliminating bias) is nullified. The comparison now hinges primarily
on the variances. If the deterministic scheme with tricks achieves near-zero bias (µ′

det ≈ 0) and its
inherent variance per step (σ′

det) is lower than the variance introduced by SR (σ′
sr > σ′

det), then:

RMSE′
det ≈

√
Nσ′

det <
√
Nσ′

sr = RMSE′
sr

In this scenario, deterministic rounding combined with the algorithmic improvements outperforms
stochastic rounding. SR becomes detrimental because it adds variance without providing a significant
bias-reduction benefit (as the bias is already handled algorithmically).
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