Equivariant Machine Learning of Sub-Grid Scale Closure Models for Large Eddy Simulation
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What is equivariance?

A model f(x) is equivariant with respect to rotations if,
for any rotation g, it satisfies f (¢ * x) = g *f (x).
An equivariant model appropriately rotates it’s outputs
when the inputs are rotated.
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Task: predict the subgrid scale stress tensor from the f1
velocity gradient tensor
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Experiment setup
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Between two subdomains (midplane, near-wall) compare:
1. No equivariance enforcement
2. Equivariance as a learning bias

3. Equivariance as an inductive bias

Using a CNN and ENN with similar parameters.

In other scientific machine learning domains
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Why equivariance?

(chemistry, atomistic physics, material science), it's
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How can we achieve equivariance?

Learning bias (soft constraint)
e Randomly rotate input/output
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The Navier-Stokes Equations automatically transform pherical harmonic basis for . .
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their fields. Why doesn’t your model?
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Takeaway 3: Equivariance, however achieved, helps
generalization to higher Reynolds numbers.

® Both soft and hard constrained models outperform the plain
CNN when generalizing from Re = 1000 to Re = 5200.

Takeaway 2: Anisotropic turbulence doesn’t provide as
much augmentation.
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| Aside: with ERC OF TAC,:)ve’re puttingzogether a ﬁel:l—wide
benchmark for data-driven RANS turbulence modelling! |
github.com/rmcconke/closure-challenge-benchmark




