

On rotational equivariance as an inductive bias in machine learning for fluids

Ryley McConkey (rmcconke@mit.edu), Ali Backour, Julia Balla, Elyssa Hofgard, Jigyasa Nigam, Tess Smidt Research Laboratory of Electronics, MIT Data Science and Artificial Intelligence Seminar Series, Chalmers University of Technology 14 April 2025

Outline

- 1. About our research group
- 2. Fluid mechanics and equivariance overview and motivation
- 3. **Early results** example tasks for ML in fluids
 - Superresolution
 - Subgrid-scale closure modelling
 - RANS anisotropy mapping
- 4. Future and ongoing work

Atomic Architects Research Group

Spheri-cow

Har-moo-nics

Atomic Architects

Research Group of Prof. Tess Smidt physics ∩ geometry ∩ machine learning

More accurate and better generalizing models with less data. Possess many of same properties as physical systems.

from the atomic to cosmic scale.

Encoding and generating geometry

Fluid mechanics - overview and motivation

Field goal: understand and predict the behaviour of **liquids**, **gases**, and **plasmas**

Techniques: experiments and numerical simulation

Application domains:

- **Engineering**. Aerospace, automotive, nuclear, chemical, wind
- **Studying nature**. Oceans, weather, astrophysics, flight, swimming
- Medicine. Cardiovascular system, respiratory system, drug delivery, spread of contagions

Key problems of practical interest

- Experiments, modelling, and simulation of **turbulence**
- **Multiphysics** phase changes, multiphase flows, heat transfer, reacting flows

Fluid mechanics - overview and motivation

Fluids: Navier-Stokes

(Incompressible, Newtonian fluid) $\rho = \text{constant} \quad \tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right) = 2\mu S_{ij}$

Conservation of mass

(Volume is conserved for a constant density fluid)

Stress tensor Pressure field Viscosity (constant)

Nomenclature

Mass density (constant)

Velocity (vector) field

Viscosity (constant)

Gravity (constant vector)

 $ma_i = \sum_{i=1}^{n} F_i$

Conservation of momentum

(Newton's second law per unit volume)

 $\left(\frac{\partial u_j}{\partial t} + u_i \frac{\partial u_j}{\partial x_i}\right) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_i} \left| \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right| + \rho g_j$

Pressure force Viscous force

Body force

Material derivative

3D: 4 equations, 4 fields

Equivariance

Navier-Stokes equations automatically transform their outputs when the inputs transform (covariance)

Should our ML model also generalize to new input orientations/frames?

Equivariance is cared a lot about in ML for:

- Computational chemistry
- Materials design
- Protein modelling
- Geometry

Equivariance

An *equivariant* model automatically transforms its output when the input is transformed.

Relevant transformations (E(3) group):

- Translations (automatic with CNNs)
 - Rotations
 - Reflections
- Inversions

Without equivariance:

• If the input is transformed, the output will not be.

Equivariance

Cesa, Lang, Weiler ICLR 2022

- 1. Data augmentation
 - a. During training, randomly transform input/output pairs
 - b. For fluids does this happen automatically?
- 2. Automatically equivariant model (inductive bias)
 - a. E.g. e3nn, ESCNN

In fluids, we often don't worry about teaching our models equivariance at all!

Is it possible to learn this power?

Why equivariance?

Active debate between equivariant/non-equivariant models in other domains is ongoing.

Advantages of equivariant models:

- Data efficiency
- No data augmentation needed
- Automatic encoding/imposition of symmetry
- Model can learn local symmetries

Disadvantages:

- More complicated than your average architecture
- Symmetry is strictly imposed

Selected Tasks

- 1. Superresolution of a vorticity field
- 2. Subgrid scale closure modelling
- 3. Anisotropy mappings for turbulence closure modelling

Goal:

Is equivariance a useful inductive bias in ML for fluids?

Superresolution of vorticity field

A. Backour

Flow: 2D Kolmogorov Forced Turbulence

Numerics: jax-cfd solver, 256x256 mesh, pseudo spectral solver, Crank Nicholson RK4, first order in time, second order in space, CFL < 0.5

Models: CNN, C₄-Equivariant CNN using <u>escnn</u>

~ 40,000 parameters for each model with 3 convolution blocks + bilinear upsampling

Dataset: Re = [1000, 1500, 2000,... 10000]

Training: Re = [1000, ..., 3500, 7000, ..., 10000]

Test: Re = [5000, 5500]

Super resolution & autoregressive prediction

Flow: 2D Kolmogorov turbulence

A. Backour

J. Balla

Tasks:

Super resolution: Predict fine field from coarse field

Autoregressive prediction: Given a time series of images, predict into the future

Superresolution - example output

Superresolution - results

A. Backour

J. Balla

Model	Train MSE	Test MSE	Equivariance Error	Parameters
CNN	3.0760	3.4738	0.0447	38624
CNN + Aug	3.0744	3.4745	0.0486	38624
ECNN	3.0823	3.4783	$2.113 \cdot 10^{-6}$	37328

- All models perform similarly on the training and test sets
- "Equivariance error" is not reduced by data augmentation for this task
- We can perform well without completely learning equivariance

Turbulence modelling via machine learning - motivation

DNS - Direct Numerical Simulation

1000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 1

LES – Large Eddy Simulation

RANS – Reynolds Averaged Navier-Stokes

(All modelled)

Subgrid scale turbulence modelling

Task (Regression): Predict the subgrid scale stress tensor in

terms of resolved tensors

Flow: Turbulent channel flow

Dataset: Johns Hopkins Turbulence Database, Re_{τ} ~ 1000

Models: 3D CNN, 3D equivariant CNN using e3nn

- ~200,000 parameters for each model with 3 convolution blocks

Training/Val/Test: 70/20/10 training/validation/testing split with randomly selected timesteps

E. Hofgard

Subgrid scale turbulence modelling

t = 0.087, filter width = 5.0, z-slice = 32

E. Hofgard

Subgrid scale turbulence modelling

E. Hofgard

Input tensor

Output tensor

Preliminary Results: subgrid scale turbulence modelling

Equivariance is not needed to capture large-scale patterns

E. Hofgard

Preliminary Results: subgrid scale turbulence modelling

E. Hofgard

 τ_{11} τ_{12} τ_{13} 0.001 0.025 0.0000 0.0005 0.000 T_{22} T23 0.000 0.001 0.0000 0.0025

T₃₃ No inductive bias 0.0000 0.0005

Preliminary Results: subgrid scale turbulence modelling

- Generalization (covariance) test after rotation of the input tensor

E. Hofgard

Energy cascade and isotropy

Notes on Computational Fluid Dynamics: General Principles, Greenshields & Weiler

Is your model currently equivariant?

Distributional symmetry

Statistical homogeneity/isotropy of the dataset

- In certain directions
- At smaller scales (Kolmogorov hypothesis)

(individual frames are inhomogeneous/anisotropic)

Result: scale-dependent rotational data augmentation

Our models might be learning equivariance, but only at the small scales due to this Kolmogorov hypothesis-based data augmentation.

E. Hofgard

RANS Anisotropy Mappings

$$\frac{\mathbf{D}\vec{u}}{Dt} = -\nabla p + \nu \nabla^2 \vec{u}$$

RANS Closure Problem

RANS

$$\nabla \cdot (\vec{u}\vec{u}) = -\nabla P + \nu \nabla^2 \vec{u}$$

$$\nabla \cdot (\vec{U}\vec{U}) = -\nabla p + \nu \nabla^2 \vec{U} - \nabla \cdot \tau$$

Closure problem: finding a relationship for $\,\mathcal{T}\,$ as a function of $\,\vec{U}\,$, $\,p\,$

RANS Anisotropy Mappings

- Recent work by others shows that equivariance is a useful inductive bias for predicting closure tensors
- We are working on reproducing and extending these results

RESEARCH ARTICLE | FEBRUARY 07 2025

Implicit modeling of equivariant tensor basis with Euclidean turbulence closure neural network ₩

TABLE I. Mean squared error of the proposed e3nn-based turbulence model (e3TM) in the prediction of optimal eddy viscosity and nonlinear part of Reynolds stress as proposed by McConkey, compared to a dense network performance reported in his paper¹⁷.

Quantity	e3TM MSE	Dense ¹⁷ MSE	Improvement
$ \begin{array}{c} a_{xx}^{\perp} \\ a_{xy}^{\perp} \\ a_{yy}^{\perp} \\ \nu^{\dagger} \end{array} $	4.96×10^{-13} 2.86×10^{-13} 2.84×10^{-13} 1.34×10^{-7}	2.31×10^{-12} 9.40×10^{-13} 9.56×10^{-13} 1.89×10^{-7}	78.3% 69.6% 70.3% 29.1%

Local Symmetry

Weiler, M., Forré, P., Verlinde, E., & Welling, M. (2024). Equivariant and Coordinate Independent Convolutional Networks.

WORLD SCIENTIFIC. https://doi.org/10.1142/14143

(Hedgehog adapted under the free license by courtesy of Freepik.)

Summary

Equivariance: widely used in other scientific ML domains - has pros and cons, but the debate is ongoing

Goal: determine whether equivariance is a useful inductive bias for fluids

Limitations:

- Simple (easy) tasks considered
- Turbulent flows with a limited range of scales

Preliminary conclusions

- We *don't* need equivariance to predict large-scale flow structures
- We *do* need it to generalize to new coordinate frames
- The more anisotropic the flow, the more equivariance will help
 - For more isotropic flows implicit data augmentation (less dependent on the coordinate frame)

Future work

- Investigate local symmetries and patterns in anisotropic flows
- Harder generalization tests can equivariance help turbulence models generalize better?

Acknowledgements

Anisotropy test - results

A. Backour

our J. Balla

\mathbf{Model}	Anisotropic MSE	Equivariance Error
CNN	5.300	0.0654
CNN + Aug	5.325	0.0657
ECNN	45.625	$4.0128 \cdot 10^{-13}$