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Outline
1. Equivariance - overview and motivation
2. Early results 

○ Superresolution
○ Subgrid-scale closure modelling
○ RANS anisotropy mapping

3. Is your model currently equivariant?
4. Conclusion
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Equivariance
Navier-Stokes equations automatically transform their outputs when the inputs transform (covariance)

Should our ML model also generalize to new input orientations/frames?

Equivariance is cared a lot about in ML for:

● Computational chemistry
● Materials design
● Protein modelling
● Geometry
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Rotated domain



Equivariance
An equivariant model automatically transforms 
its output when the input is transformed.

Relevant transformations (E(3) group):

● Translations (automatic with CNNs)
● Rotations
● Reflections
● Inversions

Without equivariance:

● If the input is transformed, the output 
will not be.
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Equivariance
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https://github.com/QUVA-Lab/escnn
Cesa, Lang, Weiler ICLR 2022

https://github.com/QUVA-Lab/escnn
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1. Data augmentation
a. During training, randomly transform 

input/output pairs
b. For fluids - does this happen automatically?

2. Automatically equivariant model (inductive bias)
a. E.g. e3nn, ESCNN

In fluids, we often don’t worry about teaching our 
models equivariance at all!
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Why equivariance?
Active debate between equivariant/non-equivariant models in other domains is ongoing.

Advantages of equivariant models:

● Data efficiency
○ No data augmentation needed

● Automatic encoding/imposition of symmetry
● Model can learn local symmetries

Disadvantages:

● More complicated than your average architecture
● Symmetry is strictly imposed

7



Selected Tasks
1. Superresolution of a vorticity field
2. Subgrid scale closure modelling
3. Anisotropy mappings for turbulence closure modelling

a. Results by others point towards equivariance being beneficial

Goal:

Is equivariance a useful inductive bias in ML for fluids? 
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Superresolution - example output
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Superresolution - results
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- All models perform similarly on the 
training and test sets

- “Equivariance error” is not reduced by 
data augmentation for this task

- We can perform well without completely 
learning equivariance
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Subgrid scale turbulence modelling

E. Hofgard

https://docs.google.com/file/d/19lAuSiS6C3x1avdFEzWmJ4LmTCz7t3lk/preview
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Subgrid scale turbulence modelling

Input tensor Output tensor
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https://docs.google.com/file/d/1-vn6edF8R7tYs573fKen8diigVB9lY8t/preview
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Preliminary Results: subgrid scale turbulence modelling
- Equivariance is not needed to capture large-scale patterns

E. Hofgard

Truth Prediction (no inductive bias) Prediction (w/ inductive bias)
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Preliminary Results: subgrid scale turbulence modelling

E. Hofgard

No inductive bias Inductive bias

(Test set MAE per pixel, horizontal slice through centre of domain)
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Preliminary Results: subgrid scale turbulence modelling
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- Generalization (covariance) test after rotation of the input tensor 

Truth Prediction (no inductive bias) Prediction (w/ inductive bias)



Distributional symmetry

Statistical homogeneity/isotropy of the dataset

● In certain directions
● At smaller scales (Kolmogorov 

hypothesis)

(individual frames are 
inhomogeneous/anisotropic)

Result: scale-dependent rotational data 
augmentation 

● Our models might be learning 
equivariance, but only at the small scales 
due to this Kolmogorov 
hypothesis-based data augmentation.

Is your model currently equivariant?
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Summary
Equivariance:  widely used in other scientific ML domains - has pros and cons, but the debate is ongoing

Goal: determine whether equivariance is a useful inductive bias for fluids

Limitations:

● Simple (easy) tasks considered
● Turbulent flows with a limited range of scales

Preliminary conclusions

● We don’t need equivariance to predict large-scale flow structures
● We do need it to generalize to new coordinate frames
● The more anisotropic the flow, the more equivariance will help

○ For more isotropic flows - implicit data augmentation (less dependent on the coordinate frame)

Future work

● Investigate local symmetries and patterns in anisotropic flows
● Harder generalization tests - can equivariance help turbulence models generalize better?

Why not try an equivariant model for your problem? Many open source implementations exist.
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Appendix



Subgrid scale turbulence modelling
Task (Regression): Predict the subgrid scale stress tensor in 
terms of resolved tensors 

Flow: Turbulent channel flow

Dataset: Johns Hopkins Turbulence Database, Reτ ~ 1000

Models: 3D CNN, 3D equivariant CNN using e3nn

- ~200,000 parameters for each model with 3 convolution 
blocks

Training/Val/Test: 70/20/10 training/validation/testing 
split with randomly selected timesteps
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https://docs.google.com/file/d/1cTY9tImUQqbU9OVTrJTAV2DwS_lRjmSY/preview
https://e3nn.org/


Task: Given a coarse resolution image of a flow field, predict a finer resolution  

Flow: 2D Kolmogorov Forced Turbulence

Numerics: jax-cfd solver, 256x256 mesh, pseudo spectral solver, Crank Nicholson RK4, first order in 
time, second order in space, CFL < 0.5

Models: CNN, C4-Equivariant CNN using escnn

~ 40,000 parameters for each model with 3 convolution blocks + bilinear upsampling

Dataset: Re = [1000, 1500, 2000,... 10000]

Training: Re = [1000, …, 3500, 7000, …, 10000]

Test: Re = [5000, 5500]

Superresolution of vorticity field
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https://github.com/QUVA-Lab/escnn


Weiler, M., Forré, P., Verlinde, E., & Welling, M. (2024). Equivariant and Coordinate Independent Convolutional Networks. 
WORLD SCIENTIFIC. https://doi.org/10.1142/14143

Local Symmetry
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Anisotropy test - results
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